

Synthesis of a Natural Oligosaccharide Antibiotic Active against Helicobacter pylori

Shino Manabe,* Kazuyuki Ishii, and Yukishige Ito*

RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

smanabe@riken.jp Received April 2, 2007

An oligosaccharide active against *Helicobacter pylori* was synthesized in a highly efficient manner for the first time. The anti-*H. pylori* oligosaccharide structure is a core-2 branched-type oligosaccharide with a characteristic α -*N*-acetylglucosamine at the nonreducing end. The oligosaccharide was synthesized from the nonreducing end to the reducing end, with an *N*-benzyl-2,3-oxazolidinone-carrying glycosyl donor used to introduce an α -*N*-acetylglucosamine at the nonreducing end. Complete chemoselective activation of a bromo sugar in the presence of a thioglycoside acceptor was achieved, and the use of 2,6-dimethylphenyl thioglycoside prevented the aglycon transfer observed when the corresponding phenyl thioglycoside is used as an acceptor.

Introduction

Helicobacter pylori, a Gram-negative bacterium, infects the stomachs of nearly half the human population.¹ Phylogeographic studies indicate that *H. pylori* originated in Africa and that *H. pylori* accompanied anatomically modern humans during their migrations from Africa.² Thus, *H. pylori* has infected humans for the past 50 000 years. Since the potential pathogenic character of *H. pylori* was first demonstrated,³ accumulated evidence strongly suggests that *H. pylori* causes gastric ulcers, carcinoma, and cancer.⁴ In 1994, the International Agency for

Research on Cancer (IARC) classified *Helicobacter pylori* as a class I carcinogenic agent.

Gastric mucins are classified into two types based on their histochemical properties.⁵ The first is a surface mucous cell-type mucin, secreted from surface mucous cells, while the second is found in deeper portions of the mucosa and is secreted by gland mucous cells including mucous neck cells, cardiac gland cells, and pyloric gland cells. *H. pylori* bacteria colonize surface mucous cell-type mucin⁶ where two carbohydrate structures, Lewis b and sialyl dimeric Lewis X, act as specific ligands for *H. pylori* infection. *H. pylori* bacteria are rarely found deep in the mucous. In 2004, Nakayama's group found an O-linked glycoprotein, secreted from deeper mucins, that inhibits *H. pylori* growth.⁷ This anti-*H. pylori* glycoprotein (**1a**) has a core-2 branched-type oligosaccharide with a characteristic α -*N*-acetylglucosamine at the nonreducing end.⁸ Growth inhibition

⁽¹⁾ Falush, D.; Wirth, T.; Linz, B.; Pritchard, J. K.; Stephens, M.; Kidd, M.; Blaser, M. J.; Graham, D. Y.; Vacher, S.; Perez-Perez, G. I.; Yamaoka, Y.; Mégraud, F.; Otto, K.; Reichard, U.; Katzowitsch, E.; Wang, X.; Achtman, M.; Suerbaum, S. *Science* **2003**, *299*, 1582–1585.

⁽²⁾ Linz, B.; Balloux, F.; Moodley, Y.; Manica, A.; Liu, H.; Roumagnac, P.; Falush, D.; Stamer, C.; Prugnolle, F.; van der Merwe, S. W.; Yamaoka, Y.; Graham, D. Y.; Perez-Trallero, E.; Wadstrom, T.; Suerbaum, S.; Achtman, M. *Nature* **2007**, *445*, 915–918.

^{(3) (}a) Warren, J. R.; Marshall, B. J. *Lancet* **1983**, *321*, 1273–1275. (b) Marshall, B. J.; Armstrong, J. A.; McGechie, D. B.; Glancy, R. J. *Med. J. Aust.* **1985**, *142*, 436–439. (c) Japanese scientists also found the relationships between bacteria and stomach inflammation about 90 years ago: Kasai, K.; Kobayashi, R. *J. Parasitol.* **1919**, *6*, 1–10.

^{(4) (}a) Cave, D. R. Semin. Gastrointest. Dis. **2001**, *12*, 196–202. (b) Peek, R. M.; Blaser, M. J., Jr. Nature Rev. Cancer **2002**, *2*, 28–37.

⁽⁵⁾ Ota, H.; Katsuyama, T.; Ishii, K.; Nakayama, J.; Shiozawa, T.; Tsukahara, Y. *Histochem. J.* **1991**, *23*, 22–28.

⁽⁶⁾ Hidaka, E.; Ota, H.; Hidaka, H.; Hayama, M.; Matsuzawa, K.; Akamatsu, T.; Nakayama, J.; Katsuyama, T. *Gut* **2001**, *49*, 474–480.

FIGURE 1. Structures of the anti-Helicobacter pylori oligosaccharides.

is not unique to this O-linked glycoprotein: *p*-nitrophenyl α -*N*acetylglucosamine also suppresses the growth of bacteria in a dose dependent manner, although the inhibition is weak. It is believed that the nonreducing terminal α -1,4-GlcNAc is essential for growth inhibition of *H. pylori* and that the antibiotic activity is due to biosynthesis inhibition of cholesteryl- α -D-glucoside, an important component of the H. pylori cell membrane. At present, an anti-H. pylori oligosaccharide is available only as a recombinant glycoprotein (CD43) form, synthesized using α -1,4-N-acetylglucosaminyl transferase in Chinese hamster ovary cells.^{9,10} Since synthesis by enzymatic synthesis is limited in the amount that can be produced and does not allow for structural variations of the hexasaccharide, the validation of these biological hypotheses is difficult. A facile and efficient strategy for chemically synthesizing this hexasaccharide and its derivatives would therefore provide a powerful tool for elucidating the biosynthesis of cholesteryl- α -D-glucoside inhibition mechanism central to its antibacterical activity and facilitate structureactivity relationship studies.

The stereoselective 1,2-cis glycosylation reaction of the 2-amino-2-deoxy sugar was a crucial problem in the synthesis of anti-*Helicobacter pylori* oligosaccharide **1b**. To date, the stereoselective glycosylation of 1,2-cis glycosides remains the principal challenge in complex oligosaccharide syntheses.^{11,12} In particular, there has been little progress in devising strategies for the 1,2-cis stereoselective glycosylation of 2-amino-2-deoxy sugars since Lemieux and Paulsen introduced an azido moiety at the 2-position as a nonparticipating group about 30 years ago.^{13,14} Recently, we reported several 1,2-cis-selective glycosyl donors for 2-amino-2-deoxy sugars.^{15,16} The *N*-benzyl-2,3-oxazolidinone group carrying glycosyl donors shows high

(10) Nakayama, J.; Kawakubo, M.; Fukuda, M.; Katsuyama, T. PCT Patent Appl. WO 2005/081904.

(11) For reviews of 1,2-cis glycosylation: (a) Demchenko, A. V. Synlett.
2003, 1225–1240. (b) Demchenko, A. V. Curr. Org. Chem. 2003, 7, 35–
79. (c) Fairbanks, A. J. Synlett. 2003, 1945–1958.

(12) Recent reports for novel methodology of 1,2-cis glycosylations: (a) Kim, J-H.; Yang, H.; Boons, G-J. *Angew. Chem. Int. Ed.* **2005**, *44*, 947–949; (b) Kim, J-H.; Yang, H.; Park, J.; Boons, G-J. *J. Am. Chem. Soc.* **2005**, *12*, 12090–12097.

 α -selectivity in glycosylation reactions near room temperature. We believed that the preparation, glycosylation, and deprotection procedures of this novel donor make it an ideal glycosyl donor for 1,2-cis glycosidic bond formation for 2-amino-2-deoxy sugars, and thus we expected that this novel glycosyl donor would prove useful in the synthesis of anti-*Helicobacter pylori* oligosaccharides.

The hexasaccharide was synthesized from the nonreducing end to the reducing end. This strategy should be useful later for structure–activity relationship studies because the putative essential structure, α -GlcNAc, is included in all the intermediates, allowing these intermediates to be screened for biological activity following deprotection.

Results and Discussion

The α -selective glycosylation reaction was carried out using cyclic carbamate donor 2^{15} and galactosyl phenyl thioglycoside $3a^{17}$ by AgOTf activation (Scheme 1) in dioxane-toluene near room temperature.¹⁸ The moderate yield of 4a (56%) was due to a side reaction in which the aglycon thiophenyl group was transferred from 3a to activated donor 2 (Scheme 2). The aglycon-transferred α -phenyl thioglycoside 5 was isolated as a byproduct. This aglycon transfer is considered to proceed via sulfonium ion intermediate.

To prevent this problem, we used 2,6-dimethylphenyl thioglycoside **3b**, recently reported by Gindersleeve.¹⁹ Acceptor **3b** was prepared from the reported benzylidene compound **6**¹⁹ (Scheme 3); following acetylation, subsequent reductive benzylidene cleavage gave 2,6-dimethylphenyl thioglycoside **3b** in 84% yield. Using **3b**, complete chemoselective glycosylation was performed again under the same reaction conditions to provide disaccharide **4b** in 92% yield (Scheme 1). In both glycosylation reactions, the corresponding β -products were not observed by 400 MHz ¹H NMR after gel filtration column chromatography of the crude material.

Subsequently, thioglycoside **4b** was directly activated by N-(phenylthio)- ϵ -caprolactam—Tf₂O²⁰ in the presence of the less reactive glycosyl acceptor, 4-OH of the glucosamine derivative **8**,²¹ to afford trisaccharide **9** in 77% yield (Scheme 4). Thioglycoside **4a** was activated similarly and gave trisaccharide **9** in 75% yield under the same conditions applied to donor **4b** and **8**. Oxidative removal of the *p*-methoxyphenyl group of **9**

(19) Li, Z.; Gildersleeve, J. C. J. Am. Chem. Soc. 2006, 128, 11612–11619.

(20) Duron, S. G.; Polat, T.; Wong, C.-H. *Org. Lett.* **2004**, *6*, 839–841. (21) Nakano, T.; Ito, Y.; Ogawa, T. *Carbohydr. Res.* **1993**, *243*, 43–69. Now, compound **8** was commercially available from TCI.

⁽⁷⁾ Kawakubo, M.; Ito, Y.; Okimura, Y.; Kobayashi, M.; Sakura, K.; Kasama, S.; Fukuda, M. N.; Fukuda, M.; Katsuyama, T.; Nakayama, J. *Science* **2004**, *305*, 1003–1007.

⁽⁸⁾ Identification of α-1,4-GlcNAc carrying oligosaccharide; van Halbeek, H.; Dorland, L.; Vliegenthart, J. F. G.; Kochetkov, N. K.; Arbatsky, N. P.; Derevitskaya, V. A. *Eur. J. Biochem.* **1982**, *127*, 21–29.

 ⁽⁹⁾ Nakayama, J.; Yeh, J-C.; Misra, A. K.; Ito, S.; Katsuyama, T.; Fukuda,
 M. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 8991-8996.

⁽¹⁴⁾ Reviews for 1,2-cis glycosylations with 2-amino-2-deoxy sugars: (a) Banoub, J.; Boullanger, P.; Lafont, D. *Chem. Rev.* **1992**, *92*, 1167–1195.

⁽¹⁵⁾ Manabe, S.; Ishii, K.; Ito, Y. J. Am. Chem. Soc. 2006, 128, 10666–10667.

⁽¹⁶⁾ For glycosyl donors with 2,3-oxazolidinone group: (a) Benakli, K.;
Zha, C.; Kerns, R. J. J. Am. Chem. Soc. 2001, 123, 9461-9462; (b) Kerns,
R. J.; Zha, C.; Benakli, K.; Liang, Y.-Z. Tetrahedron Lett. 2003, 44, 8069-8072; (c) Wei, P.; Kerns, R. J. Tetrahedron Lett. 2005, 46, 6901-6905;
(d) Boysen, M.; Gemma, E.; Lahmann, M.; Oscarson, S. Chem. Commun.
2005, 3044-3046; (e) Wei, P.; Kerns, R. J. J. Org. Chem. 2005, 70, 4195-4198; (f) Bohn, M. L.; Colombo, M. I.; Stortz, C. A.; Rúveda, E. A. Carbohydr. Res. 2006, 341, 1096-1104; (g) 2,3-oxazolidinone carrying sugar as a good acceptor: Crich, D.; Vinod, A. U. J. Org. Chem. 2005, 70, 1291-1296.

⁽¹⁷⁾ Stahl, W.; Ahlers, M.; Walch, A.; Bartnik, E.; Kretzschmar, G.;
Grabley, S.; Schleyerbach, R.; Eur. Pat. Appl., EPXXDW, EP 601417, 1994.
(18) Demchenko, A. V.; Stauchi, T.; Boons, G-J. Synlett. 1997, 818–820

SCHEME 1. 1,2-Cis Stereoselective Glycosylation Using an N-Benzyloxazolidinone-Carrying Glycosyl Donor

SCHEME 2. Migration of the Thiophenyl Group

was achieved using ceric ammonium nitrate in water to afford exclusively β -hemiacetal **10**, which was subsequently converted into trichloroacetimidate donor **11** in 82% overall yield for the two steps. Similarly, the bottom part of trisaccharide **13** was prepared in 65% yield from disaccharide **4b** and *O*-methyl galactosamine derivative **12**.²² The completely regioselective reductive opening of the benzylidene group of **13** by Cu(OTf)₂– BH₃²³ afforded trisaccharide acceptor **14** in 76% yield. When 0.05 equiv of Cu(OTf)₂ was used as described, the yield of **14** was only 22%, and unidentified byproducts were generated. Increasing the amount of Cu(OTf)₂ up to 0.5 equiv gave better yields.

The final glycosylation reaction was performed using imidate **11** and acceptor **14** in the presence of $BF_3 \cdot OEt_2$ (Scheme 5) at $-20 \,^{\circ}C$ to give the hexasaccharide **15** in 83% yield.

Deprotected hexasaccharide **1b** was obtained after stepwise deprotection of **15** (Scheme 6). The phthalimide group was removed by N,N'-ethylenediamine in BuOH at 90 °C to give **16**. The cyclic carbamate group was not opened by this treatment and was subsequently removed under alkaline conditions. After both the *N*- and *O*-benzyl groups were removed by hydrogenolysis, selective N-acetylation using Ac₂O in MeOH gave hexasaccharide **1b** in 57% overall yield in the four steps.

Conclusion

We have achieved the first total synthesis of an anti-*Helicobacter pylori* oligosaccharide, compound **1b**, which is completed with high overall efficancy by employing a previously

described cyclic carbamate-equipped glycosyl donor, 2. All glycosylation reactions were achieved in complete stereoselectivities including the 1,2-cis glycosylation of amino sugar. The establishment of a facile methodology for the synthesis of 1b, together with the recent cloning of cholesteryl a-glucosyl transferase,^{24,25} means that the structure-activity relationship of 1 against H. pylori can now be rigorously investigated.²⁵ This is important because strains of *H. pylori* resistant to antibiotics that inhibit bacterial protein biosynthesis have been reported.²⁶ It has also been reported that intrinsic α -glucosylation of cholesterol abrogates phagocytosis of H. pylori and subsequent T cell activation.²⁷ It might be possible to develop a novel drug candidate that produces minimal side effects and is specific against *H. pylori*: first, because the putative target, cholesteryl α-glucosides, have only been detected in *H. pylori* and *Achole*plasma axanthum²⁸ and second, because few proteins encoded in other bacterial species such as Clostridium thermocellum and Lactobacillus johnsonii are homologous to H. pylori cholsteryl glucosyl transferase.25,29

⁽²²⁾ Komarova, B. S.; Tsvetkov, Y. E.; Knirel, Y. A.; Zähringer, U.; Pier, G. B.; Nifantiev, N. E. *Tetrahedron Lett.* **2006**, *47*, 3583–3587.

⁽²³⁾ Shie, C-R.; Tzeng, Z-H.; Kulkami, S. S.; Uang, B-J.; Hsu, C-Y.; Hung, S-C.; Angew. Chem., Int. Ed. 2005, 44, 1665–1668.

⁽²⁴⁾ Lebrun, A-H.; Christian, W.; Hildebrand, J.; Chunin, Y.; Zähringer, U.; Lindner, B.; Meyer, T. F.; Heinz, E.; Warnecke, D. *J. Biol. Chem.* **2006**, *281*, 27765–27772.

⁽²⁵⁾ During our manuscript preparation, it was reported that α -GlcNAc having pentasaccharide inhibits *Helicobacter pylori* cholesterol α -glucosyl transferase: Lee, H.; Kobayashi, M.; Wang, P.; Nakayama, J.; Seeberger, P. H.; Fukuda, M. *Biochem. Biophys. Res. Commun.* **2006**, *349*, 1235–1241.

⁽²⁶⁾ Mégraud, F. Gut 2004, 53, 1374-1384.

⁽²⁷⁾ Wunger, C.; Churin, Y.; Winau, F.; Warnecke, D.; Vieth, M.; Lindner, B.; Zähringer, U.; Mollenkopf, H.-J.; Heinz, E.; Meyer, T. F. *Nat. Med.* **2006**, *12*, 1030–1038.

⁽²⁸⁾ Mayberry, W. R.; Smith, P. F. Biochim. Biophys. Acta. 1983, 752, 434-443.

⁽²⁹⁾ Closridium thermocellum (41% identity); Lactocacillus johnsonii (35% identity).

SCHEME 4. The Synthesis of Trisaccharides

Structure-activity relationship study will be reported in due course.

Experimental Section

NMR peak assignments including the identification of the residue connection were carried out by DQF (double-quantum-filtered)—COSY, HMBC, and HMQC experiments.

Compound (7). A diol 2,6-dimethylphenyl 4,6-*O*-benzylidene-1-thio- β -D-galactopyranoside **6** (3.0 g, 7.72 mmol) was acetylated with Ac₂O-pyridine (1:2, 30 mL) at room temperature overnight. The mixture was concentrated with toluene several times to give a crystalline residue. Crystallization of the residue from EtOAc/ hexane gave **7** (3.3 g, 90%). Mp 184–185 °C. [α]_D²⁴ +18 (*c* 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ : 7.55–7.36 (m, 5 H, aromatic *H*), 7.26–7.11 (m, 3 H, aromatic *H*), 5.47 (t, $J_{1,2} = 10.0$ Hz, 1 H, H-2), 5.47 (s, 1 H, acetal-CHPh), 4.95 (dd, $J_{2,3} = 10.0$ Hz, $J_{3,4} = 3.5$ Hz, 1 H, H-3), 4.48 (d, 1 H, H-1), 4.35 (dd, $J_{4,5} = 1.0$ Hz, 1 H, H-4), 4.18 (dd, $J_{5,6a} = 1.5$ Hz, $J_{6a,6b} = 12.5$ Hz, 1 H, H-6a), 3.95 (dd, $J_{5,6b} = 1.5$ Hz, 1 H, H-6b), 3.34 (d, 1 H, H-5), 2.57 (s, 6 H, 2 CH₃), 2.14 and 2.08 (s, 3 H each, COCH₃); ¹³C NMR (125 MHz, CDCl₃) δ : 170.7 (COCH₃), 169.4 (COCH₃), 144.3, 137.5, 131.4, 129.1, 128.2 and 126.4 (aromatic *C*), 101.0 (acetal-CHPh), 88.5 (C-1), 73.4 (C-4), 73.0 (C-3), 69.3 (C-5), 69.1 (C-6), 67.8 (C-2), 22.4 (2 C, 2 CH₃), 20.9 (COCH₃), 20.8 (COCH₃). Anal. Calcd for C₂₅H₂₈O₇S: C, 63.54; H, 5.97. Found: C, 63.61; H, 5.91.

Compound 3b. A solution of hydrogen chloride in 1,4-dioxane (4 M; 28 mL) was added to an ice-cold mixture of the 4,6-*O*-benzylidene acetal **7** (4.4 g, 9.31 mmol), sodium cyanoborohydride (7.2 g, 111.7 mmol), and molecular sieves 3 Å (3.0 g) in THF (70 mL) containing methyl orange as a pH indicator. The deep red

JOC Article

SCHEME 5. The Hexasaccharide Synthesis

mixture was stirred for 30 min and then filtered through Celite. The filtrate was diluted with EtOAc and washed with 1 M HCl. The separated aqueous layer was extracted with EtOAc. The combined organic extracts were washed with water and brine, dried (Na₂SO₄), filtered, and concentrated. Purification by flash column chromatography on silica gel (4:1, CHCl₃–EtOAc) gave **3b** (3.7 g, 84%) which was crystallized from Et₂O/hexane. Mp 117–118 °C. $[\alpha]_D^{24}$ +14 (*c* 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ : 7.35–7.10 (m, 8 H, aromatic *H*), 5.41 (t, $J_{1,2}$ = 10.5 Hz, 1 H, H-2), 4.93 (dd, $J_{2,3}$ = 9.5 Hz, $J_{3,4}$ = 3.0 Hz, 1 H, H-3), 4.53 and 4.50 (d, J = 12.0 Hz, 1 H each, CH₂Ph), 4.41 (d, 1 H, H-1), 4.15 (br t, $J_{H-4,4-OH}$ = 4.0 Hz, 1 H, H-4), 3.73 (dd, $J_{5,6a}$ = 5.0 Hz, $J_{6a,6b}$ = 11.0 Hz, 1 H, H-6a), 3.66 (dd, $J_{5,6b}$ = 5.0 Hz, 1 H, H-6b), 3.52 (br t, 1 H, H-5), 2.75 (d, 1 H, 4-OH), 2.54 (s, 6 H, 2 CH₃), 2.12 and 2.11 (s, 3 H each, COCH₃); ¹³C NMR (125 MHz, CDCl₃) δ : 170.2

 $(COCH_3)$, 169.6 $(COCH_3)$, 144.0, 137.5, 131.3, 129.2, 128.4, 128.2, 127.8 and 127.6 (aromatic *C*), 88.9 (C-1), 76.6 (C-5), 74.5 (C-3), 73.7 (*C*H₂Ph), 69.5 (C-6), 68.3 (C-2), 68.2 (C-4), 22.4 (2 C, 2 *C*H₃), 20.9 and 20.8 (COCH₃). Anal. Calcd for C₂₅H₃₀O₇S: C, 63.27; H, 6.37. Found: C, 62.97; H, 6.29.

Compound 4a. To an ice-cold suspension of 2,6-di-*tert*-butyl-4-methylpyridine (DTBMP; 0.49 g, 2.38 mmol), silver trifluoromethanesulfonate (AgOTf; 0.76 g, 2.97 mmol), and molecular sieves 4 Å (2.0 g) in 1,4-dioxane—toluene (3:1, 20 mL) was added a mixture of *N*-benzyl-6-*O*-benzyl-2,3,-*N*,*O*-carbonyl-4-*O*-chloroacetyl-2-deoxy- α -D-glucopyranosyl bromide **2** (1.04 g, 1.98 mmol) and phenyl 2,3-di-*O*-acetyl-6-*O*-benzyl-1-thio- β -D-galactopyranoside **3a** (0.59 g, 1.32 mmol) in 1,4-dioxane—toluene (3:1, 20 mL) via a cannula. The stirring mixture was allowed to warm to room temperature and stirred for 1 day. The mixture was diluted with

EtOAc and filtered through Celite. The filtrate was washed with saturated aqueous NaHCO₃. The separated aqueous layer was extracted with EtOAc. The combined organic extracts were washed with brine, dried (Na₂SO₄), filtered, and concentrated. Purification by flash column chromatography (3:2, hexane-EtOAc) gave an α -linked disaccharide **4a** (645 mg, 56%) as a colorless foam. [α]_D²⁴ -30 (c 0.83, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ: 7.50-7.05 (m, 20 H, aromatic *H*), 5.33 (t, $J_4^{II}{}_5^{II} = 9.5$ Hz, 1 H, H-4^{II}), 5.08 $(t, J_2^{I_3I} = 10.5 \text{ Hz}, 1 \text{ H}, \text{H}-2^{I}), 4.92 \text{ (dd}, J_3^{I_4I} = 2.5 \text{ Hz}, 1 \text{ H}, \text{H}-3^{I}),$ 4.90 (d, $J_1^{II} {}_2^{II} = 3.0$ Hz, 1 H, H-1^{II}), 4.87 and 3.92 (d, J = 14.5Hz, 1 H each, N-CH₂Ph), 4.64 (d, $J_1^{I_2I} = 9.5$ Hz, 1 H, H-1^I), 4.59 and 4.51 (d, J = 12.0 Hz, 1 H each, CH_2Ph), 4.49 and 4.33 (d, J= 12.0 Hz, 1 H each, CH_2Ph), 4.23 (d, 1 H, H-4^I), 4.19 (dd, $J_2^{II}_{,3^{II}}$ = 12.0 Hz, $J_{3I_{4}II} = 10.5$ Hz, 1 H, H-3^{II}), 3.99 and 3.89 (d, J =14.5 Hz, 1 H each, COCH₂Cl), 3.87 (m, 1 H, H-5^I), 3.79 (dddd, $J_{5}^{\Pi}{}_{,6}{}^{\Pi}{}_{a} = J_{5}^{\Pi}{}_{,6}{}^{\Pi}{}_{b} = 3.0 \text{ Hz}, 1 \text{ H}, \text{H-5}^{\Pi}$), 3.74 (dd, $J_{5}^{\Pi}{}_{,6}{}^{I}a = 8.5 \text{ Hz},$ $J_{6\,a,6\,b}^{I} = 10.0$ Hz, 1 H, H-6^Ia), 3.66 (dd, $J_{5\,6\,b}^{I} = 6.0$ Hz, 1 H, H-6^Ib), 3.45 (dd, $J_{6^{II}a,6^{II}b} = 11.0$ Hz, 1 H, H-6^{II}a), 3.38 (dd, 1 H, H-6^{II}b), 3.20 (dd, 1 H, H-2^{II}), 2.09 and 1.92 (s, 3 H each, COCH₃); ¹³C NMR (125 MHz, CDCl₃) δ: 170.3 (COCH₃), 169.1 (COCH₃), 165.6 (oxazolidinone, C=O), 158.4 (COCH₂Cl), 137.1, 134.6, 134.1, 129.7 and 129.1-127.9 (aromatic C), 96.7 (C-1II), 84.6 (C-1^I), 76.0 (C-5^I), 75.8 (C-4^I), 74.1 (C-3^I), 73.7 (CH₂Ph), 73.5 (CH₂-Ph), 72.9 (C-3^{II}), 71.4 (C-5^{II}), 70.2 (C-4^{II}), 66.9 (C-2^I), 66.7 (C-6^{II}), 55.5 (C-6^I), 59.7 (C-2^{II}), 47.2 (N-CH₂Ph), 40.4 (COCH₂Cl), 20.9 (COCH₃), 20.8 (COCH₃). Anal. Calcd for C₄₆H₄₈ClNO₁₃S: C, 62.05; H, 5.43; N, 1.57. Found: C, 61.90; H, 5.33; N, 1.64.

Compound 4b. To an ice-cold suspension of DTBMP (0.39 g, 1.90 mmol), AgOTf (0.61 g, 2.37 mmol), and molecular sieves 4 Å (2.0 g) in 1,4-dioxane-toluene (3:1, 20 mL) was added a mixture of donor 2 (0.83 g, 1.58 mmol) and acceptor 3b (0.5 g, 1.05 mmol) in 1,4-dioxane-toluene (3:1, 20 mL) via a cannula. After addition, the ice-bath was removed. The mixture was stirred at room temperature overnight. The work-up was achieved in the same manner as described for 4a. Purification by flash column chromatography (3:2, hexane-EtOAc) gave an α-linked disaccharide 4b (896 mg, 93%) as a colorless foam. $[\alpha]D^{27} + 33$ (*c* 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ : 7.34–7.07 (m, 18 H, aromatic H), 5.43 (t, $J_4^{II}{}_5^{II} = 9.5$ Hz, 1 H, H-4^{II}), 5.23 (t, $J_1^{I}{}_2^{I} = J_2^{I}{}_3^{I} = 10.5$ Hz, 1 H, H-2^I), 4.97 (d, $J_{1}^{\Pi}_{,2}^{\Pi} = 2.5$ Hz, 1 H, H-1^{II}), 4.91 (dd, $J_{3}^{I}_{,4}^{\Pi}$ = 2.5 Hz, 1 H, H- 31), 4.89 and 3.98 (d, J = 15.0 Hz, 1 H each, N-CH₂Ph), 4.71 (dd, $J_2^{II}{}_{,3}^{II} = 12.0$ Hz, $J_3^{II}{}_{,4}^{II} = 10.5$ Hz, 1 H, H-3^{II}), 4.52 and 4.37 (d, J = 12.0 Hz, 1 H each, CH_2Ph), 4.48 (s, 2 H, CH₂Ph), 4.47 (d, 1 H, H-1^I), 4.23 (d, 1 H, H-4^I), 4.08 (dd, $J_5^{II}_{.6}{}^{II}_{.6}$ $= J_5^{II}{}_{,6}{}^{II}{}_{b} = 2.5$ Hz, 1 H, H-5^{II}), 4.02 and 3.90 (d, J = 15.0 Hz, 1 H each, COCH₂Cl), 3.73 (dd, $J_{5,6a}^{I} = 8.5$ Hz, $J_{6a,6b}^{I} = 10.0$ Hz, 1 = 11.0 Hz, 1 H, H-6^{II}a), 3.52 (dd, 1 H, H-6^Ib), 3.48 (dd, 1 H, H-6^{II}b), 3.32 (dd, 1 H, H-2^{II}), 2.53 (s, 6 H, 2 CH₃), 2.11 and 1.96 (s, 3 H each, COCH₃); ¹³C NMR (125 MHz, CDCl₃) δ: 170.2 (COCH₃), 169.3 (COCH₃), 165.7 (COCH₂Cl), 158.4 (oxazolidinone, C=O), 144.0, 137.1, 137.1, 134.1, 130.8 and 129.3-127.6 (aromatic *C*), 96.6 (C-1^{II}), 88.6 (C-1^I), 75.8 (C-5^I), 75.6 (C-4^I), 73.9 (C-3^I), 73.6 (CH₂Ph), 73.5 (CH₂Ph), 73.2 (C-3^{II}), 71.5 (C-5^{II}), 70.3 (C-4^{II}), 68.1 (C-2^I), 66.9 (C-6^I), 66.9 (C-6^{II}), 59.8 (C-2^{II}), 47.2 (N-CH₂Ph), 40.4 (COCH₂Cl), 22.4 (2 C, 2 CH₃), 20.8 and 20.7 (COCH₃). Anal. Calcd for C₄₈H₅₂ClNO₁₃S: C, 62.77; H, 5.71; N, 1.53. Found: C, 62.76; H, 5.75; N, 1.48.

Compound 5. $[\alpha]_D^{24} + 220$ (*c* 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ : 7.44–7.24 (m, 15 H, aromatic *H*), 5.41 (d, $J_{1,2} = 5.0$ Hz, 1 H, H-1), 5.40 (t, $J_{3,4} = 10.5$ Hz, 1 H, H-4), 4.81 and 4.17 (d, J = 14.5 Hz, 1 H each, N-CH₂Ph), 4.57 and 4.19 (d, J = 11.5 Hz, 1 H each, CH₂Ph), 4.44 (dd, $J_{2,3} = 12.0$ Hz, 1 H, H-3), 4.30 (dddd, $J_{4,5} = 9.5$ Hz, $J_{5,6a} = 2.5$ Hz, $J_{5,6b} = 4.0$ Hz, 1 H, H-5), 3.97 and 3.89 (d, J = 15.0 Hz, 1 H each, COCH₂Cl), 3.64 (dd, 1 H, H-2), 3.58 (dd, $J_{6a,6b} = 11.0$ Hz, 1 H, H-6a), 3.56 (dd, 1 H, H-6b). ¹³C NMR (125 MHz, CDCl₃) δ 165.6 (COCH₂Cl), 157.8 (oxazolidinone, *C*=O), 137.1, 134.1, 132.3, 131.9, 129.3, 129.1, 128.9, 128.6, 128.4, 128.2, 128.1 and 128.0 (aromatic *C*), 84.8 (C-1), 75.8 (C-

3), 73.6 (CH₂Ph), 71.2 (C-5), 69.9 (C-4), 67.2 (C-6), 59.6 (C-2), 47.9 (N-CH₂Ph), 40.3 (COCH₂Cl). Anal. Calcd for $C_{29}H_{28}$ -ClNO₆S: C, 62.87; H, 5.09; N, 2.53. Found: C, 62.65; H, 5.05; N, 2.42.

Compound 9. Using Compound 4a as a Glycosyl Donor. To a mixture of donor **4a** (410 mg, 0.46 mmol), acceptor **8** (411 mg, 0.69 mmol), *N*-(phenylthio)- ϵ -caprolactam (102 mg, 0.46 mmol), and molecular sieves 4 Å (3.0 g) in CH₂Cl₂ was added Tf₂O (78 μ L, 0.46 mmol) slowly at -20 °C. After the mixture was stirred at -20 °C for 45 min, the mixture was quenched with saturated aqueous NaHCO₃ and filtered through Celite. The filtrate was extracted with CHCl₃. The combined organic extracts were washed with water, dried (Na₂SO₄), filtered, and concentrated. Purification by flash column chromatography (4:3 \rightarrow 5:4, hexane–EtOAc) gave compound **9** (477 mg, 75%) as a colorless foam.

Using Compound 4b as a Glycosyl Donor. To a mixture of donor 4b (1.45 g, 1.58 mmol), acceptor 8 (1.41 g, 2.37 mmol), N-(phenylthio)- ϵ -caprolactam (0.35 g, 1.58 mmol), and activated molecular sieves 4 Å (4.0 g) in CH₂Cl₂ (40 mL) was added Tf₂O (0.27 mL, 0.46 mmol) slowly at 4 °C. After the ice-cold mixture was stirred for 1 h, the mixture was worked-up in a manner similar to that described above for preparation of 9 using 4a. Purification by flash column chromatography (4:3, hexane-EtOAc) gave 9 (1.68 mg, 77%) as a colorless foam. [α]D²⁷ +51 (*c* 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ: 7.68-7.01 (m, 33 H, aromatic H), 5.59 (d, $J_{1,2}^{I} = 8.5 \text{ Hz}, 1 \text{ H}, \text{H-}1^{I}), 5.36 \text{ (t, } J_{4}^{III}, 5^{III} = 10.0 \text{ Hz}, 1 \text{ H}, \text{H-}4^{III}),$ $J_1 J_2 = 0.5 \text{ Hz}, 1 \text{ H}, 11 \text{ H}, 5.50 \text{ (I, } J_4 J_5 = 0.00 \text{ Hz}, 1 \text{ H}, 11 \text{ H}, 5.14 \text{ (dd}, J_1 J_2 II = 8.0 \text{ Hz}, J_2 II_3 II = 11.0 \text{ Hz}, 1 \text{ H}, \text{H} - 2II), 4.89 \text{ (d,} J_1 II_2 III = 3.0 \text{ Hz}, 1 \text{ H}, \text{H} - 1III), 4.78 \text{ and } 4.50 \text{ (d, } J = 12.5 \text{ Hz}, 1 \text{ H} \text{ each}, CH_2 \text{Ph}), 4.76 \text{ (dd}, J_3 II_4 II = 2.5 \text{ Hz}, 1 \text{ H}, \text{H} - 3II), 4.76 \text{ and } 4.51 \text{ H}$ (d, J = 12.0 Hz, 1 H each, CH_2Ph), 4.73 and 3.83 (d, J = 15.0 Hz, 1 H each, N-CH₂Ph), 4.67 (d, 1 H, H-1^{II}), 4.51 and 4.35 (d, J =12.0 Hz, 1 H each, CH_2Ph), 4.49 (dd, $J_2^{III}_{3III} = 12.0$ Hz, $J_3^{III}_{4III} =$ 10.5 Hz, 1 H, H-3^{III}), 4.45 (s, 2 H, CH₂Ph), 4.40 (dd, $J_2I_3I = 11.0$ Hz, 1 H, H-2^I), 4.30 (dd, $J_{3I,4}^{II} = 8.5$ Hz, 1 H, H-3^I), 4.14 (t, $J_{4I,5}^{II}$ = 9.5 Hz, 1 H, H-4^I), 4.14 (d, 1 H, H-4^{II}), 4.02 (dddd, $J_5^{III}{}_{,6}^{III}{}_{a}$ = $_{5}^{III}_{,6}^{III}_{b} = 3.0$ Hz, 1 H, H- 5^{III}), 3.80 (br s, 2 H, H- $6^{I}a$ and H- $6^{I}b$), 3.70 (s, 3 H, PhOC H_3), 3.62 and 3.51 (d, J = 15.0 Hz, 1 H each, COCH2Cl), 3.61 (m, 1 H, H-5^I), 3.59 (m, 1 H, H-6^{II}a), 3.56 (m, 1 H, H-5^{II}), 3.55 (m, 1 H, H-6^{III}a), 3.45 (m, 2 H, H-6^{II}b and H-6^{III}b), 2.02 and 1.96 (s, 3 H each, COCH₃); ¹³C NMR (125 MHz, CDCl₃) δ: 170.2 (COCH₃), 169.1 (COCH₃), 165.6 (COCH₂Cl), 158.1 (oxazolidinone, C=O), 155.3 (phthalimide, C=O), 150.8 (phthalimide, C=O), 138.0, 137.9, 137.2, 137.1, 134.0, 133.8, 131.5, 129.1–127.2, 123.4, 118.7 and 114.3 (aromatic C), 100.3 (C-1^I), 97.6 (C-1^{II}), 96.4 (C-1^{III}), 77.8 (C-4^I), 76.1 (C-3^I), 75.5 (C-4^{II}), 75.0 (C-5^I), 74.1 (CH₂Ph), 73.6 (CH₂Ph), 73.5 (2 C, 2 CH₂Ph), 73.4 (C-3^{III}), 72.7 (C-3^{II}), 72.2 (C-5^{II}), 71.5 (C-5^{III}), 70.0 (C-4^{III}), 69.7 (C-2^{II}), 67.6 (C-6^I), 66.7 (C-6^{III}), 66.5 (C-6^{II}), 59.7 (C-2^{III}), 55.5 (PhOCH₃), 55.5 (C-2^I), 47.1 (N-CH₂Ph), 40.1 (COCH₂Cl), 20.8 (COCH₃), 20.7 (COCH₃). Anal. Calcd for C₇₅H₇₅ClN₂O₂₁: C, 65.47; H, 5.49; N, 2.04. Found: C, 65.46; H, 5.48; N, 2.00.

Compound 10. Compound 9 (733 mg, 0.53 mmol) was treated with cerium (IV) ammonium nitrate (CAN; 1.75 g, 3.20 mmol) in CH₃CN-H₂O-toluene (8:3:2, 26 mL) on an ice-water bath for 20 min. The mixture was diluted with EtOAc and washed with water. The separated aqueous layer was extracted with EtOAc. The combined organic extracts were washed with water and brine, dried (Na₂SO₄), filtered and concentrated. Purification by flash column chromatography (3:2, EtOAc /hexane) gave hemiacetal 10 (603 mg, 89%) as a yellow foam. [α]D²⁵ +54 (c 0.82, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ: 7.73-7.00 (m, 29 H, aromatic H), 5.36 (t, $J_4^{\text{III}}{}_{,5}^{\text{III}}{}= 9.5 \text{ Hz}, 1 \text{ H}, \text{H-4}^{\text{III}}), 5.31 (t, J_1^{-1}{}_{,2}^{-1}{}= J_{\text{H}-1}^{-1}{}_{,1-\text{OH}}^{-1}{}= 8.5 \text{ Hz}, 1 \text{ H}, \text{H-1}^{1}), 5.11 (dd, J_1^{-1}{}_{,2}^{-1}{}= 7.5 \text{ Hz}, J_2^{-1}{}_{,3}^{-1}{}= 10.5 \text{ Hz}, 1 \text{ H}, \text{H-2}^{\text{II}}),$ 4.87 (d, $J_1^{III}_2^{III} = 2.5$ Hz, 1 H, H-1^{III}), 4.79 and 4.48 (d, J = 12.0Hz, 1 H each, CH_2Ph), 4.77 and 4.47 (d, J = 12.0 Hz, 1 H each, CH_2Ph), 4.72 and 3.82 (d, J = 14.5 Hz, 1 H each, N- CH_2Ph), 4.71 (dd, $J_{3^{II},4^{II}} = 2.5$ Hz, 1 H, H-3^{II}), 4.59 (d, 1 H, H-1^{II}), 4.50 and 4.35 (d, J = 12.0 Hz, 1 H each, CH_2Ph), 4.47 (m, 1 H, H-3^{III}), 4.44 (s, 2 H, CH₂Ph), 4.31 (dd, $J_{2,3}^{II} = 10.5$ Hz, $J_{3,4}^{II} = 8.5$ Hz, 1

H, H-3^I), 4.12 (d, 1 H, H-4^{II}), 4.10 (dd, $J_{4_{5}}^{I} = 9.5$ Hz, 1 H, H-4^I), 4.00 (dddd, $J_5^{\text{III}}_{,6}^{\text{III}}_{a} = J_5^{\text{III}}_{,6}^{\text{III}}_{b} = 3.0$ Hz, 1 H, H-5^{III}), 3.80 (dd, $J_{5,6a}^{I} = 3.0$ Hz, $J_{6a,6b}^{I} = 10.5$ Hz, 1 H, H-6a), 3.76 (dd, $J_{5,6b}^{I} = 10.5$ Hz, 1 H, H-6b), 3.76 (dd, J_{5,6b}^{I} = 10.5 Hz, 1 H, H-6b), 3.76 (dd, J_{5,6b}^{I} = 10.5 Hz, 1 H, H-6b), 3.76 (dd, J_{5,6b}^{I} = 10.5 Hz, 1 H, H-6b), 3.76 (dd, J_{5,6b}^{I} = 10.5 Hz, 1 H, H-6b), 3.76 (dd, J_{5,6b}^{I} = 10.5 Hz, 1 H, H-6b), 3.76 (dd, J_{5,6b}^{I} = 10.5 Hz, 1 H, H-6b), 3.76 (dd, J_{5,6b}^{I} = 10.5 Hz, 1 H, H-6b), 3.76 (dd, J_{5,6b}^{I} = 10.5 Hz, 1 H, H-6b), 3.76 (dd, J_{5,6b}^{I} = 10.5 Hz, 1 H, H-6b), 3.76 (dd, J_{5,6b}^{I} = 10.5 Hz, 1 H, H-6b), 3.76 (dd, J_{5,6b}^{I} = 10.5 Hz, 1 H, 1 H, H-6b), 3.76 (dd, J_{5,6b}^{I} = 10.5 2.0 Hz, 1 H, H-6^Ib), 3.62 and 3.51 (d, J = 15.0 Hz, 1 H each, COCH₂Cl), 3.58 (m, 1 H, H-6^{II}a), 3.56 (m, 1 H, H-5^I), 3.54 (m, 1 H, H-6^{III}a), 3.51 (m, 1 H, H-5^{II}), 3.45 (dd, $J_6^{III}{}_{a,6}^{III}{}_{b} = 11.0$ Hz, 1 H, H-6^{III}b), 3.42 (dd, $J_5^{II}{}_{,6}^{II}{}_{b} = 5.0$ Hz, $J_6^{II}{}_{,a,6}^{II}{}_{b} = 9.5$ Hz, 1 H, H-6^{II}b), 3.22 (dd, 1 H, H-2^{III}), 3.09 (d, 1 H, OH-1^I), 2.00 and 1.95 (s, 3 H each, COCH₃); ¹³C NMR (125 MHz, CDCl₃) δ: 170.2 (COCH₃), 169.1 (COCH₃), 168.0 (2 C, phthalimide, C=O), 165.6 (COCH₂Cl), 158.1 (oxazolidinone, C=O), 138.1, 137.7, 137.2, 137.1, 134.0, 133.8, 131.5, 129.0-127.2 and 123.3 (aromatic C), 100.2 (C-1^{II}), 96.4 (C-1^{III}), 92.8 (C-1^I), 77.7 (C-4^I), 75.7 (C-3^I), 75.5 (C-4^{II}), 74.7 (C-5^I), 73.9 (CH₂Ph), 73.6 (CH₂Ph), 73.5 (3 C, 2 CH₂Ph and C-3^{III}), 72.7 (C-3^{II}), 72.1 (C-5^{II}), 71.5 (C-5^{III}), 69.9 (C-4^{III}), 69.6 (C-2^{II}), 67.6 (C-6^I), 66.6 (C-6^{III}), 66.5 (C-6^{II}), 59.7 (C-2^{III}), 57.4 (C-2^I), 47.1 (N-CH₂Ph), 40.1 (COCH₂Cl), 20.8 (COCH₃), 20.7 (COCH₃). Anal. Calcd for C₆₈H₆₉ClN₂O₂₀: C, 64.32; H, 5.48; N, 2.21. Found: C, 64.10; H, 5.50; N, 2.13.

Compound 11. To an ice-cold mixture of hemiacetal 10 (358 mg, 0.28 mmol) and trichloroacetonitrile (0.28 mL, 2.80 mmol) in CH₂Cl₂ (6 mL) was added 0.32 M solution of 1,8-diazabicyclo-[5.4.0]undec-7-ene (DBU) in CH₂Cl₂ (88 µL, 0.028 mmol). After the mixture was stirred for 10 min, the mixture was purified directly by flash column chromatography (1:1, hexane-EtOAc) to give compound 11 (366 mg, 92%) as a pale yellow foam. $[\alpha]D^{25} + 70$ (c 0.66, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ: 8.53 [s, 1 H, C(NH)CCl₃], 7.67–7.01 (m, 29 H, aromatic H), 6.36 (d, $J_1I_2I =$ 9.0 Hz, 1 H, H-1^I), 5.36 (t, $J_4^{III}_{,5}^{III} = 9.5$ Hz, 1 H, H-4^{III}), 5.12 (dd, $J_1^{II}_{,2}^{II} = 8.0 \text{ Hz}, J_2^{II}_{,3}^{II} = 11.0 \text{ Hz}, 1 \text{ H}, \text{H-}2^{II}), 4.88 \text{ (d, } J_1^{III}_{,2}^{III} =$ 2.5 Hz, 1 H, H-1^{III}), 4.80 and 4.51 (d, J = 12.5 Hz, 1 H each, CH_2Ph), 4.77 and 4.51 (d, J = 12.0 Hz, 1 H each, CH_2Ph), 4.73 and 3.84 (d, J = 15.0 Hz, 1 H each, N-CH₂Ph), 4.37 (dd, $J_{3}^{II}_{4}^{II} =$ 3.0 Hz, 1 H, H-3^{II}), 4.64 (d, 1 H, H-1^{II}), 4.51 and 4.35 (d, J = 11.5Hz, 1 H each, CH_2 Ph), 4.48 (dd, $J_2^{III}_{,3}^{III} = 12.0$ Hz, $J_3^{III}_{,4}^{III} = 10.0$ Hz, 1 H, H-3^{III}), 4.47 and 4.45 (d, J = 11.5 Hz, 1 H each, CH_2Ph), 4.44 (dd, $J_{2,3}^{I,I} = 10.5$ Hz, 1 H, H-2^I), 4.34 (t, $J_{3,4}^{I,I} = 10.0$ Hz, 1 H, H-3^I), 4.20 (t, $J_{4}^{I}{}_{5}^{I} = 10.0$ Hz, 1 H, H-4^I), 4.13 (d, 1 H, H-4^{II}), 4.01 (dddd, $J_5^{III}{}_{,6}^{III}{}_{a} = J_5^{III}{}_{,6}^{III}{}_{b} = 3.5$ Hz, 1 H, H-5^{III}), 3.83 (d, $J_5^{I}{}_{,6}{}_{a}$ $= J_{5,6b}^{I} = 2.5 \text{ Hz}, 2 \text{ H}, \text{H-}6^{I}\text{a} \text{ and } \text{H-}6^{I}\text{b}), 3.71 \text{ (dddd, 1 H, H-}5^{I}\text{)},$ 3.60 and 3.49 (d, J = 15.0 Hz, 1 H each, COCH₂Cl), 3.59 (m, 1 H, H-6^{II}a), 3.55 (dd, $J_6^{III}{}_{a,6}{}^{III}{}_{b} = 11.0$ Hz, 1 H, H-6^{III}a), 3.53 (m, 1 H, H-5^{II}), 3.45 (dd, 1 H, H-6^{III}b), 3.45 (m, 1 H, H-6^{II}b), 3.22 (dd, 1 H, H-2^{III}), 2.02 and 1.96 (s, 3 H each, COCH₃); ¹³C NMR (125 MHz, CDCl₃) δ: 170.2 (COCH₃), 169.1 (COCH₃), 168.0 and 167.4 (broadened each, phtalimide, C=O), 165.6 (COCH2Cl), 160.9 [C(NH)CCl₃], 158.1 (oxazolidinone, C=O), 138.0, 137.8, 137.2, 137.1, 134.0, 133.9, 131.3, 129.1–127.3 and 123.3 (aromatic C), 100.1 (C-1^{II}), 96.4 (C-1^{III}), 94.0 (C-1^I), 90.3 [C(NH)CCl₃], 77.3 (C-4^I), 75.8 (2 C, C-3^I and C-5^I), 75.5 (C-4^{II}), 74.0 (CH₂Ph), 73.5 (4 C, 3 CH₂Ph and C-3^{III}), 72.7 (C-3^{II}), 72.1 (C-5^{II}), 71.5 (C-5^{III}), 69.9 (C-4^{III}), 69.6 (C-2^{III}), 67.1 (C-6^I), 66.7 (C-6^{III}), 66.5 (C-6^{II}), 59.7 (C-2^{III}), 54.4 (C-2^I), 47.1 (N-CH₂Ph), 40.1 (COCH₂Cl), 20.8 (COCH₃), 20.7 (COCH₃). Anal. Calcd for C₇₀H₆₉Cl₄N₃O₂₀: C, 59.45; H, 4.92; N, 2.97. Found: C, 59.20; H, 4.96; N, 2.93.

Compound 13. To a mixture of donor **4b** (877 mg, 0.96 mmol), acceptor **12** (352 mg, 1.15 mmol), *N*-(phenylthio)- ϵ -caprolactam (211 mg, 0.96 mmol), and molecular sieves 4 Å (3.0 g) in CH₂Cl₂ (20 mL) was added Tf₂O (162 μ L, 0.96 mmol) slowly at 4 °C. After the chilled mixture was stirred for 30 min, the mixture was warmed to room temperature and stirred for 30 min. Then the mixture was worked-up in a manner similar to that described for **9**. The crude mixture was purified by flash column chromatography (1:1, hexane–EtOAc) to give **13** (674 mg, 65%) as a colorless foam. [α]p²⁷ +89 (*c* 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ : 7.50–7.07 (m, 20 H, aromatic *H*), 5.52 (s, 1 H, acetal-CHPh), 5.42 (t, $J_4^{II}_{,5}^{III} = 10.0$ Hz, 1 H, H-4^{III}), 5.23 (dd, $J_1^{II}_{,2}^{II} = 7.5$ Hz, $J_2^{II}_{,3}^{II} = 10.5$ Hz, 1 H, H-2^{III}), 4.93 (d, $J_1^{III}_{,2}^{III} = 3.0$ Hz, 1 H, -1^{III}), 4.85 (dd, $J_3^{II}_{,4}^{III} = 3.0$ Hz, 1 H,

H-3^{II}), 4.85 and 3.92 (d, J = 14.5 Hz, 1 H each, N-CH₂Ph), 4.80 (d, 1 H, H-1^{II}), 4.66 (dd, $J_2^{III}_{3}^{III} = 12.0$ Hz, $J_3^{III}_{4}^{III} = 10.5$ Hz, 1 H, H-3^{III}), 4.56 (s, 2 H, CH₂Ph), 4.52 and 4.35 (d, J = 11.5 Hz, 1 H each, CH_2Ph), 4.38 (d, $J_{3,4}^{III} = 3.5$ Hz, 1 H, H-3^I), 4.23 (dd, $J_{5,6a}^{I} = 1.5 \text{ Hz}, J_{6a,6b}^{I} = 12.0 \text{ Hz}, 1 \text{ H}, \text{H-6b}, 4.21 \text{ (d, 1 H, H-4b)}, 4.21 \text{ (d, 1 H, H-4$ 4.11 (dd, $J_{2}^{I}{}_{,3}^{I}$ = 10.5 Hz, 1 H, H-3^I), 4.07 (dddd, $J_{5}^{III}{}_{,6}^{III}{}_{,a}$ = $J_{5}^{III}{}_{,6}^{III}{}_{,b}$ =3.0 Hz, 1 H, H-5^{III}), 3.97 (dd, $J_{5,6b}^{I}$ = 1.5 Hz, 1H, H-6^Ib), 3.90 (dd, 1 H, H-2^I), 3.87 and 3.74 (d, J = 14.5 Hz, 1 H each, COCH₂-Cl), 3.86 (br t, $J_5^{II}{}_{,6}^{II}{}_a = J_5^{II}{}_{,6}^{II}{}_b = 7.5$ Hz, 1 H, H-5^{II}), 3.77 (dd, $J_{6}^{\Pi}{}_{a}{}_{b}^{\Pi}{}_{b} = 9.5 \text{ Hz}, 1 \text{ H}, \text{H-}6^{\Pi}\text{a}), 3.64 \text{ (dd, } 1 \text{ H}, \text{H-}6^{\Pi}\text{b}), 3.64 \text{ (br s,}$ 1 H, H-5^I), 3.54 (dd, $J_6^{III}{}_{a,6}^{III}{}_{b} = 11.0$ Hz, 1 H, H-6^{III}a), 3.46 (dd, 1 H, H-6^{III}b), 3.45 (s, 3 H, OCH₃), 3.30 (dd, 1 H, H-2^{III}), 2.03 and 1.95 (s, 3 H each, COCH₃); ¹³C NMR (125 MHz, CDCl₃) δ: 170.4 (COCH₃), 169.4 (COCH₃), 165.7 (COCH₂Cl), 158.4 (oxazolidinone, C=O), 137.5, 137.1, 134.0, 129.2–127.7 and 126.1 (aromatic C), 102.2 (C-1^{II}), 100.8 (acetal-CHPh), 99.5 (C-1^I), 96.8 (C-1^{III}), 75.9 $(C-4^{II})$, 75.8 $(C-3^{I})$, 75.7 $(C-4^{I})$, 73.6 (CH_2Ph) . 73.5 (2 C, C-3^{III}) and CH₂Ph), 73.1 (C-3^{II}), 72.5 (C-5^{II}), 71.6 (C-5^I), 70.1 (C-4^{III}), 69.0 (C-6^I), 68.7 (C-2^{II}), 67.2 (C-6^{II}), 66.5 (C-6^{III}), 62.9 (C-5^I), 59.8 (C-2^{III}), 59.0 (C-2^I), 55.6 (OCH₃), 47.3 (N-CH₂Ph), 40.4 (COCH₂-Cl), 20.9 (COCH₃), 20.7 (COCH₃). Anal. Calcd for C₅₄H₅₉-ClN₄O₁₈: C, 59.64; H, 5.47; N, 5.15. Found: C, 59.73; H, 5.49; N, 4.98.

Compound 14. To a solution of compound 13 (674 mg, 0.62 mmol) in CH₂Cl₂ (15 mL) were added BH₃·THF in THF (1 M; 3.1 mL, 3.10 mmol) and copper(II) trifluoromethanesulfonate (112 mg, 0.31 mmol). After being stirred for 30 min at room temperature, the mixture was cooled on an ice-water bath, quenched by sequential addition of triethylamine (68 μ L, 0.62 mmol) and methanol. The mixture was filtered through Celite. The filtrate was washed with water and the separated aqueous layer was extracted with CHCl₃. The combined organic extracts were washed with brine, dried (Na2SO4), filtered and concentrated. Purification by flash column chromatography on silica gel (3:2, CHCl₃-EtOAc) gave 14 (512 mg, 76%) as a colorless foam. $[\alpha]_D^{24}$ +53 (c 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ: 7.39-7.05 (m, 20 H, aromatic *H*), 5.37 (t, $J_4^{\text{III}}{}_5^{\text{III}} = 9.5$ Hz, 1 H, H-4^{III}), 5.28 (dd, $J_1^{\text{II}}{}_2^{\text{II}} = 7.5$ Hz, $J_2^{II} J_3^{II} = 10.5$ Hz, 1 H, H-2^{II}), 4.95 (d, $J_1^{III} J_3^{III} = 2.5$ Hz, 1 H, H-1^{III}), 4.91 and 4.57 (d, J = 11.0 Hz, 1 H each, CH_2Ph), 4.90 (dd, $J_{3^{II}4^{II}} = 2.5$ Hz, 1 H, H-3^{II}), 4.84 and 3.98 (d, J = 15.0 Hz, 1 H, N-CH₂Ph), 4.83 (d, $J_{1,2}^{I} = 3.0$ Hz, 1 H, H-1^I), 4.82 (d, 1 H, H-1^{II}), 4.67 and 4.58 (d, J = 12.0 Hz, 1 H each, CH₂Ph), 4.52 (dd, $J_2^{\text{III}}_{,3}^{\text{III}} = 11.5 \text{ Hz}, J_3^{\text{III}}_{,4}^{\text{III}} = 11.5 \text{ Hz}, 1 \text{ H}, \text{H}-3^{\text{III}}_{,3}, 4.51 \text{ and } 4.34$ $(d, J = 12.0 \text{ Hz}, 1 \text{ H each}, CH_2\text{Ph}), 4.25 (d, 1 \text{ H}, \text{H}-4^{\text{II}}), 4.07 (dd, 1 \text{ H},$ $J_{2,3}^{I,I} = 10.5 \text{ Hz}, J_{3,4}^{I,I} = 3.0 \text{ Hz}, 1 \text{ H}, \text{H-}3^{I}), 4.01 \text{ (dddd, } J_{5,6}^{III,6III} = 10.5 \text{ Hz}, J_{3,4}^{I,I} = 3.0 \text{ Hz}, 1 \text{ H}, \text{H-}3^{I})$ $J_5^{\text{III}}{}_6^{\text{III}}{}_b = 2.5 \text{ Hz}, 1 \text{ H}, \text{H}{-}5^{\text{III}}$, 3.96 (br s, 1 H, H-4^I), 3.86 (m, 2 H, H-6^{II}a and H-5^{II}), 3.81 (dd, 1 H, H-2^I), 3.74 (m, 1 H, H-5^I), 3.70 (m, 1 H, H-6^Ia), 3.64 (dd, $J_5^{II}{}_{,6}^{II}{}_{b} = 9.5$ Hz, $J_6^{II}{}_{a,6}^{II}{}_{b} = 13.0$ Hz, 1 H, H-6^{II}), 3.55 (dd, $J_6^{III}_{a,6}^{III}_{b} = 11.0$ Hz, 1 H, H-6^{III}a), 3.49 (m, 1 H, H-6^Ib), 3.47 and 3.39 (d, J = 15.0 Hz, 1 H each, COCH₂Cl), 3.43 (dd, 1 H, H-6^{III}b), 3.40 (s, 3 H, OCH₃), 3.28 (dd, 1 H, H-2^{III}), 2.09 and 1.97 (s, 3 H each, COCH₃); ¹³C NMR (125 MHz, CDCl₃) δ: 170.4 (COCH₃), 169.6 (COCH₃), 165.5 (COCH₂Cl), 158.3 (oxazolidinone, C=O), 137.7, 137.1, 137.0, 134.0, and 129.2-127.7 (aromatic C), 102.1 (C-1^{II}), 98.9 (C-1^I), 96.8 (C-1^{III}), 77.8 (C-3^I), 76.1 (C-4^I), 76.0 (C-4^{II}), 74.6 (CH₂Ph), 73.7 (CH₂Ph), 73.6 (C-3^{III}), 73.4 (CH₂Ph), 72.7 (C-3^{II}), 72.4 (C-5^{II}), 71.7 (C-5^{III}), 70.4 (C-5^I), 69.7 (C-4^{III}), 69.1 (C-2^{II}), 66.7 (C-6^{II}), 66.4 (C-6^{III}), 62.0 (C-6^I), 60.3 (C-2^I), 59.8 (C-2^{III}), 55.3 (OCH₃), 47.4 (N-CH₂Ph), 40.0 (COCH₂Cl), 20.8 and 20.7 (COCH₃). Anal. Calcd for C₅₄H₆₁-ClN₄O₁₈: C, 59.53; H, 5.64; N, 5.14. Found: C, 59.33; H, 5.69; N. 4.97.

Compound 15. A solution of BF₃·Et₂O in CH₂Cl₂ (0.1 M; 50 μ L, 0.050 mmol) was added to a mixture of donor **11** (359 mg, 0.254 mmol), acceptor **14** (254 mg, 0.233 mmol), and molecular sieves 4 Å (0.5 g) in CH₂Cl₂ (10 mL) at -20 °C. After being stirred for 30 min at -20 °C, the mixture was quenched by addition of saturated aqueous NaHCO₃ and filtered through Celite. The filtrate was extracted with CHCl₃. The combined organic extracts were

washed with water, dried (Na₂SO₄), filtered and concentrated. Purification by flash column chromatography on silica gel $(1:1 \rightarrow$ 4:3, EtOAc-hexane) gave a hexasaccharide 15 (434 mg, 80%) as a colorless foam. $[\alpha]_D^{24}$ +48 (c 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ : 7.66–7.05 (m, 49 H, aromatic *H*), 5.35 (t, $J_3^{IV}{}_4^{IV} = J_4^{IV}{}_5^{IV} = 10.0$ Hz, 1 H, H-4^{IV}), 5.34 (t, $J_3^{VI}{}_4^{VI} = J_4^{VI}{}_5^{VI} = 10.0$ Hz, 1 H, H-4^{IV}), 5.34 (t, $J_3^{VI}{}_4^{VI} = J_4^{VI}{}_5^{VI} = 10.0$ Hz, 1 H, H-4^{IV}), 5.22 (dd, $J_1^{V}{}_2^{V} = 7.5$ Hz, $J_2^{V}{}_3^{V} = 11.0$ Hz, 1 H, H-2^V), 5.09 (dd, $J_1^{III}_{2}^{III} = 8.0$ Hz, $J_2^{III}_{3}^{III} = 11.0$ Hz, 1 H, H-2^{III}), 5.02 (d, $J_1^{II}_{,2}^{II} = 8.0$ Hz, 1 H, H-1^{II}), 4.94 (d, $J_1^{VI}_{,2}^{VI} = 2.5$ Hz, 1 H, H-1^{VI}), 4.86 (d, $J_1^{IV}_{,2}^{IV} = 3.0$ Hz, 1 H, H-1^{IV}), 4.86 (dd, $J_3^{V}_{,4}^{V}$ = 3.5 Hz, 1 H, H-3^V), 4.86 and 3.96 (d, J = 15.0 Hz, 1 H each, N-CH₂Ph), 4.84 and 4.45 (d, J = 11.0 Hz, 1 H each, CH₂Ph), 4.77 and 4.41 (d, J = 12.0 Hz, 1 H each, CH_2Ph), 4.74 and 4.45 (d, J= 11.5 Hz, 1 H each, CH_2Ph), 4.72 and 3.82 (d, J = 15.0 Hz, 1 H each, N-CH₂Ph), 4.72 (d, 1 H, H-1^V), 4.68 (dd, $J_3^{III}_{,4}^{III} = 3.0$ Hz, 1 H, H-3^{III}), 4.62 and 4.60 (d, J = 12.0 Hz, 1 H each, CH_2Ph), 4.57 (d, 1 H, H-1^{III}), 4.51 and 4.35 (d, J = 12.0 Hz, 1 H each, CH_2Ph), 4.50 and 4.32 (d, J = 11.5 Hz, 1 H each, CH_2Ph), 4.47 $(dd, J_2^{VI} J_3^{VI} = 12.0 \text{ Hz}, 1 \text{ H}, \text{H} J_3^{VI}), 4.46 (dd, J_2^{IV} J_3^{IV} = 12.0 \text{ Hz}, 1 \text{ H}, 1 \text{ H} J_3^{VI})$ 1 H, H-3^{IV}), 4.44 and 4.41 (d, J = 11.0 Hz, 1 H each, CH_2Ph), 4.34 (d, $J_{1,2}^{I}$ = 3.0 Hz, 1 H, H-1^I), 4.25 (d, 1 H, H-4^V), 4.23 (dd, $J_{2}^{\Pi}{}_{,3}^{\Pi} = 10.5 \text{ Hz}, J_{3}^{\Pi}{}_{,4}^{\Pi} = 8.5 \text{ Hz}, 1 \text{ H}, \text{H}-3^{\Pi}), 4.12 \text{ (d, 1 H, H}-4^{\Pi}),$ 4.11 (t, $J_{4^{II},5^{II}} = 8.5$ Hz, 1 H, H-4^{II}), 4.11 (d, 1 H, H-2^{II}), 4.00 (m, 1 H, H-5^{IV}), 3.98 (m, 1 H, H-5^{VI}), 3.87 (dd, $J_2^{I_3I} = 10.5$ Hz, $J_3^{I_4I} = 2.5$ Hz, 1 H, H-3^I), 3.84 (t, $J_5^{V_6V_a} = J_6^{V_a6V_b} = 9.5$ Hz, 1 H, H-6^Va), 3.81 (m, 1 H, H-6^{II}a), 3.80 (m, 1 H, H-5^V), 3.79 (br s, 1 H, H-4^I), 3.75 (dd, $J_5^{II}{}_{,6}{}^{II}{}_{b} = 1.0$ Hz, $J_6^{II}{}_{a,6}{}^{II}{}_{b} = 11.0$ Hz, 1 H, H-6^{II}b), 3.71 (dd, $J_{5,6a}^{I} = 3.0$ Hz, $J_{6a,6b}^{I} = 11.5$ Hz, 1 H, H-6^Ia), 3.64 (m, 1 H, H-5^I), 3.64 (m, 1 H, H-6^Vb), 3.61 and 3.50 (d, J = 15.0 Hz, 1 H each, COCH₂Cl), 3.60 (dd, 1 H, H-2^I), 3.55 (m, 1 H, H-6^{III}a), 3.54 (dd, $J_5^{VV}{}_6^{VV}{}_a = 2.5$ Hz, $J_6^{VV}{}_{a,6}^{VV}{}_b = 11.0$ Hz, 1 H, H-6^{IV}a), 3.51 (dd, $J_5^{VI}{}_6^{VI}{}_a = 2.5$ Hz, $J_6^{VI}{}_{a,6}^{VI}{}_b = 11.0$ Hz, 1 H, H-6^{IV}a), 3.50 and 3.43 (d, J = 15.0 Hz, 1 H each, COCH₂Cl), 3.49 (m, 1 H, H-5^{II}), 3.46 (m, 1 H, H-5^{III}), 3.44 (dd, $J_5^{IV}{}_{,6}^{IV}{}_{,b} = 2.5$ Hz, 1 H, H-6^{IV}b), 3.41 (m, 1 H, H-6^Ib), 3.40 (m, 1 H, H-6^{III}b), 3.39 (dd, $J_5^{VI}{}_{,6}^{VI}{}_{b} = 2.5 \text{ Hz}, 1 \text{ H}, \text{H-}6^{\text{VI}}\text{b}), 3.27 \text{ (dd, 1 H, H-}2^{\text{VI}}\text{)}, 3.21 \text{ (dd, 1 H)}$ H, H-2^{IV}), 2.86 (s, 3 H, OCH₃), 2.03, 2.01, 1.95 and 1.95 (s, 3 H each, COCH₃); ¹³C NMR (125 MHz, CDCl₃) δ: 170.3 (COCH₃), 170.2 (COCH₃), 169.6 (COCH₃), 169.1 (COCH₃), 167.8 (broadened each, phthalimide, C=O), 167.4 (broadened each, phthalimide, C=O), 165.5 (2 C, 2 COCH₂Cl), 158.2 and 158.0 (oxazolidinone, C= O), 138.1, 138.0, 137.8, 137.2, 137.1, 137.0, 137.0, 134.0, 134.0, 133.7, 131.5, 129.1–127.1, 123.2 and 122.9 (aromatic C), 102.1 (C-1^V), 100.1 (C-1^{III}), 98.8 (C-1^{II}), 98.3 (C-1^I), 96.8 (C-1^{VI}), 96.5 (C-1^{IV}), 77.9 (C-3^I), 77.5 (C-4^{II}), 76.6 (C-4^I), 75.8 (C4^V), 75.7 (C-3^{II}), 75.5 (C-4^{III}), 74.7 (CH₂Ph), 74.6 (C-5^{II}), 73.9 (CH₂Ph), 73.7 (CH₂Ph), 73.6 (CH₂Ph), 73.5 (2 C, C-3^{IV} and C-3^{VI}), 73.4 (2 C, 2 CH₂Ph), 73.4 (CH₂Ph), 72.7 (C-3^{III}), 72.6 (C-3^V), 72.2 (C-5^V), 71.9 (C-5^{III}), 71.5 (C-5^{VI}), 71.4 (C-5^{IV}), 69.9 (C-4^{VI}), 69.8 (C-4^{IV}), 69.6 $(2 C, C-6^{I} and C-2^{V}), 69.4 (C-5^{I}), 69.0 (C-2^{III}), 67.6 (C-6^{II}), 66.6$ (2 C, C-6^{III} and C-6^V), 66.4 (2 C, C-6^{IV} and C-6^{VI}), 59.9 (C-2^I), 59.7 (2 C, C-2^{IV} and C-2^{VI}), 55.6 (C-2^{II}), 54.4 (OCH₃), 47.2 and 47.0 (N-CH₂Ph), 40.1 (2 C, 2 COCH₂Cl), 20.8-20.6 (COCH₃). Anal. Calcd for C₁₂₂H₁₂₈Cl₂N₆O₃₇: C, 62.59; H, 5.51; N, 3.59. Found: C, 62.31; H, 5.48; N, 3.59.

Compound 16. A solution of compound **15** (102 mg, 0.043 mmol) and *N*,*N*'-ethylenediamine (0.5 mL) in BuOH (5 mL) was stirred at 90 °C overnight. The mixture was concentrated *in vacuo*, and the residue was chromatographed on silica gel with CHCl₃– MeOH (9:1) to give a N-dephthaloylated compound **16** (77 mg, 95%). [α]p²⁵ +26 (*c* 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ : 7.37–7.00 (aromatic *H*), 5.08 and 4.58 (d, *J* = 11.5 Hz, 1 H each, CH₂Ph), 5.08 (d, *J*₁^{GlcN'}₂^{GlcN'} = 2.5 Hz, 1 H, H-1^{GlcN'}), 4.97 (d, *J*₁^{GlcN}, ²^{GlcN} = 3.0 Hz, 1 H, H-1^{GlcN}), 4.92 and 4.65 (d, *J* = 12.0 Hz, 1 H each, CH₂Ph), 4.80 and 3.78 (d, *J* = 15.0 Hz, 1 H each, N-CH₂Ph), 4.80 and 3.78 (d, *J* = 15.0 Hz, 1 H each, N-CH₂Ph), 4.58 and 4.54 (d, *J* = 11.0 Hz, 1 H each, CH₂Ph), 4.58 and 4.54 (d, *J* = 11.0 Hz, 1 H each, CH₂Ph), 4.56 (d, *J*₁^{Glal}, ^{2Glal} = 7.5 Hz, 1 H, H-1^{Glal}), 4.52 and 4.42 (d, *J* =

11.5 Hz, 1 H each, CH_2Ph), 4.50 and 4.42 (d, J = 11.5 Hz, 1 H each, CH₂Ph), 4.41 (d, $J_1^{\text{Gal'}}_{2}^{\text{Gal'}} = 7.5$ Hz, 1 H, H-1^{Gal'}), 4.37 and 4.34 (d, J = 11.5 Hz, 1 H each, CH₂Ph), 4.37 (dd, $J_2^{\text{GlcN'}}_{3}^{\text{GlcN'}} =$ 12.0 Hz, $J_3^{\text{GlcN}'}_{,4}^{\text{GlcN}'} = 9.5$ Hz, 1 H, H-3^{GlcN'}), 4.28 (dd, $J_2^{\text{GlcN}}_{,3}^{\text{GlcN}}$ = 12.0 Hz, $J_3^{\text{GlcN}}_4^{\text{GlcN}} = 9.5$ Hz, 1 H, H-3^{GlcN}), 4.20 (d, $J_1^{\text{II}}_2^{\text{II}} =$ 7.5 Hz, 1 H, H-1^{II}), 4.08 (dd, $J_{2_{3}}^{I} I = 10.5$ Hz, $J_{3_{4}}^{I} I = 3.0$ Hz, 1 H, H-3^I), 4.06 (br s, 1 H, H-4^{Gal}), 4.03 (t, $J_3^{II}{}_4^{II} = J_4^{II}{}_5^{II} = 9.5$ Hz, 1 H, H-4^{II}), 4.00 (dd, $J_5^{II}{}_{,6}{}^{II}{}_{a} = 3.0$ Hz, $J_6^{II}{}_{a,6}{}^{II}{}_{b} = 11.5$ Hz, 1 H, H-6^{II}a), 3.95 (br s, 1 H, H-4^{Gal}'), 3.91 (br s, 1 H, H-4^{Gal}), 3.95-3.90 (m, 3 H, H-5^{GlcN}, H-5^{GlcN'} and H-5^I), 3.84 (dd, 1 H, H-2^I), 3.70 (m, 1 H, H-6^{II}b), 3.68 (m, 1 H, H-4^{GlcN}), 3.67 (m, 1 H, H-4^{GlcN'}), 3.62 (m, 1 H, H-2^{Gal}), 3.59 (m, 2 H, H-3^{Gal} and H-6^{Gal}b), 3.56 (m, 1 H, H-6^{Gal'}a), 3.49 (m, 1 H, H-2^{Gal'}), 3.46 (m, 1 H, H-5^{II}), 3.71-3.52 (m, 6 H, H-6^Ia, H-6^Ib, H-6^{GlcN}a, H-6^{GlcN}b, H-6^{GlcN}'a and H-6^{GlcN'}b), 3.39 (t, $J_{2^{II},3^{II}} = 9.5$ Hz, 1 H, H-2^{II}), 3.40 (m, 1 H, H-5^{Gal'}), 3.36 (s, 3 H, OCH₃), 3.30 (dd, $J_5^{\text{Gal'}}{}_{,6}^{\text{Gal'}}{}_{,b} = 5.0$ Hz, $J_6^{\text{Gal'}}{}_{,a,6}^{\text{Gal'}}{}_{,b} = 9.5$ Hz, 1 H, H-6^{Gal'}b), 3.29 (m, 1 H, H-3^{Gal'}), 3.11 (dd, 1 H, H-2^{GlcN'}), 3.04 (dd, 1 H, H-2^{GlcN}), 2.80 (dd, 1 H, H-2^{II}). ¹³C NMR (125 MHz, $CDCl_3$) δ : 158.8 and 158.6 (oxazolidinone, C=O), 138.8, 138.3, 138.1, 137.5, 137.4 (2 C), 137.3, 134.2 (2 C), 129.1-127.0 (aromatic C), 104.8 (C-1^{Gal}), 103.5 (C-1^{II}), 103.1 (C-1^{Gal'}), 98.7 (C-1^I), 96.6 (C-1^{GlcN}), 96.2 (C-1^{GlcN'}), 81.7 (C-3^{II}), 78.6 (C-4^{Gal}), 77.9 (2 C, C-3^I and C-4^{Gal'}), 76.9 (C-4^{II}), 76.5 (C-3^{GlcN'}), 76.2 (2 C, C-4^I and C-3^{GlcN}), 74.6 (C-5^{GlcN}), 74.5 (C-5^{II}), 74.3 (CH₂Ph), 74.2 (C-5^{GlcN'}), 74.0 (CH₂Ph), 73.5 (3 C, 2 CH₂Ph and C-3^{Gal'}), 73.3 (2 C, C-3^{Gal} and CH₂Ph), 73.0 (2 C, 2 CH₂Ph), 72.4 (C-5^{Gal}), 72.4 (C-2^{Gal'}), 72.0 (2 C, C-2^{Gal} and C-5^{Gal'}), 69.7 (C-5^I), 69.5 (C-6^I), 68.9 (C-4^{GlcN'}), 68.7 (2 C, C-4^{GlcN} and C-6^{GlcN} either C-6^{GlcN'}), 68.6 (C-6^{GlcN} either C-6^{GlcN'}), 67.4 (C-6^{Gal}), 66.8 (C-6^{Gal'}), 59.9 (C-2^I), 59.2 (C-2^{GlcN'}), 58.9 (C-2^{GlcN}), 55.1 (OCH₃), 47.2 (N-CH₂Ph), 46.7 (N-CH₂Ph).

Compound 1b. A solution of compound **16** (77 mg, 0.041 mmol) in 1 M NaOH (4 mL) and 1,4-dioxane (4 mL) was stirred at 80 °C overnight. The mixture was cooled to room temperature, diluted with EtOAc, and washed with water. The separated aqueous layer was extracted with EtOAc. The combined organic extracts were washed with water and brine, dried (Na2SO4), filtered, and concentrated. Purification by flash column chromatography on silica gel (8:1, CHCl₃-MeOH) gave a N,O-deacylated intermediate (68 mg, 90%). [α]_D²⁴ +54 (*c* 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ: 7.34–7.15 (m, 45 H, aromatic H), 5.15 and 4.60 (d, J = 11.5Hz, 1 H each, CH_2Ph), 5.00 (d, $J_1^{GlcN'}_2^{GlcN'} = 3.5$ Hz, 1 H, H-1^{GlcN'}), 4.89 (d, $J_1^{\text{GlcN}}_{,2}^{\text{GlcN}} = 3.5 \text{ Hz}, 1 \text{ H}, \text{H}-1^{\text{GlcN}}$), 4.88 and 4.55 (d, J =11.5 Hz, 1 H each, CH_2Ph), 4.82 (d, $J_{1,2}^{I} = 4.0$ Hz, 1 H, H-1^I), 4.61 and 4.43 (d, J = 11.0 Hz, 1 H each, CH_2Ph), 4.55 and 4.49 (d, J = 11.5 Hz, 1 H each, CH_2Ph), 4.53 and 4.48 (d, J = 11.0 Hz, 1 H each, CH_2Ph), 4.50 (d, $J_1^{Gal}_2^{Gal} = 8.0$ Hz, 1 H, H-1^{Gal}), 4.40 and 4.36 (d, J = 12.0 Hz, 1 H each, CH_2Ph), 4.38 (d, $J_1^{\text{Gal'}}_{,2}^{\text{Gal'}} =$ 8.0 Hz, 1 H, H-1^{Gal'}), 4.22 (s, 2 H, CH₂Ph), 4.19 (d, $J_1^{II}_{,2}^{II} = 8.0$ Hz, 1 H, H-1^{II}), 4.05 (dd, $J_{2_{3}}^{I} = 10.5$ Hz, $J_{3_{4}}^{I} = 3.0$ Hz, 1 H, H-3^I), 4.04 (m, 1 H, H-5^{GlcN'}), 4.00 (t, $J_{3}^{\Pi}{}_{,4}^{\Pi} = J_{4}^{\Pi}{}_{,5}^{\Pi} = 9.5$ Hz, 1 H, H-4^{II}), 3.98 (br s, 1 H, H-4^{Gal}), 3.97 (m, 1 H, H-5^{GlcN}), 3.95 (dd, $J_{5}^{II}{}_{,6}{}^{II}{}_{a} = 3.0 \text{ Hz}, J_{6}^{II}{}_{a,6}{}^{II}{}_{b} = 11.0 \text{ Hz}, \text{ H-6}^{II}a), 3.92 \text{ (m, 1 H, H-5}^{I}),$ 3.90 (br s, 1 H, H-4^I), 3.84 (dd, 1 H, H-2^I), 3.82 (br s, 1 H, H-4^{Gal'}), 3.76 (m, 1 H, H-6^{GlcN}a), 3.76 (m, 1 H, H-6^Ia), 3.75 (m, 1 H, H-5^{Gal}), 3.74 (m, 1 H, H-6^{Gal'}a), 3.74 and 3.64 (d, J = 15.0 Hz, 1 H each, N-CH₂Ph), 3.69 and 3.56 (d, J = 15.0 Hz, 1 H each, N-CH₂Ph), 3.67 (m, 1 H, H-6^Ib), 3.65 (m, 1 H, H-2^{Gal}), 3.56 (m, 1 H, H-6^{Gal}b), 3.56 (m, 1 H, H-6^{GlcN'}b), 3.53 (dd, $J_5^{GlcN}_6^{GlcN}_b = 7.5$ Hz, $J_6^{GlcN}_{a6}^{GlcN}_{bb}$ = 10.0 Hz, H-6^{GlcN}b), 3.49 (dd, $J_2^{Gal'}_{,3}^{Gal'} = 10.0$ Hz, 1 H, H-2^{Gal'}), 3.45 (dd, $J_2^{GlcN'}_{,3}^{GlcN'} = 10.0$ Hz, $J_3^{GlcN'}_{,4}^{GlcN'} = 8.5$ Hz, 1 H, H-3^{GlcN'}), 3.44 (m, 1 H, H-5^{II}), 3.40 (m, 1 H, H-4^{GlcN'}), 3.38 (t, $J_{2^{II},3^{II}} = J_{3^{II},4^{II}} = 9.5$ Hz, 1 H, H-3^{II}), 3.38 (m, 1 H, H-5^{Gal'}), 3.38 (s, 3 H, OCH₃), 3.35 (m, 1 H, H-4^{GlcN}), 3.34 (m, 1 H, H-3^{GlcN}), 3.31 (dd, $J_5^{\text{Gal'}}{}_{,6}^{\text{Gal'}}{}_{b} = 4.5 \text{ Hz}, J_6^{\text{Gal'}}{}_{a,6}^{\text{Gal'}}{}_{b} = 8.5 \text{ Hz}, 1 \text{ H}, \text{H-6}^{\text{Gal'}}{}_{b}),$ 3.19 (br m, 1 H, H-3^{Gal'}), 2.79 (dd, 1 H, H-2^{II}), 2.54 (dd, 1 H, H-2^{GlcN'}), 2.47 (dd, 1 H, H-2^{GlcN}). ¹³C NMR (125 MHz, CDCl₃) δ: 139.7, 139.6, 139.2, 138.4, 138.0, 137.7 (2 C), 137.6, 137.3 and 128.5-127.1 (aromatic C), 104.9 (C-1^{II}), 104.1 (C-1^{Gal}), 103.1 (C-

 $1^{\text{Gal}'}, 98.8 \text{ (C-1^{1})}, 98.5 \text{ (C-1^{\text{GlcN}})}, 98.2 \text{ (C-1^{\text{GlcN}'})}, 82.9 \text{ (C-3^{II})}, 78.8 \text{ (C-4^{\text{Gal}'})}, 78.0 \text{ (C-3^{I})}, 77.7 \text{ (C-4^{\text{Gal}})}, 76.9 \text{ (C-4^{II})}, 76.4 \text{ (C-4^{I})}, 74.8 \text{ (C-5^{II})}, 74.5 \text{ (CH}_2\text{Ph)}, 74.3 \text{ (CH}_2\text{Ph)}, 74.1 \text{ (C-3^{\text{Gal}'})}, 73.6 \text{ (3 C, 2 CH}_2\text{Ph} \text{ and C-3^{\text{Gal}})}, 73.4 \text{ (CH}_2\text{Ph}), 73.2 \text{ (CH}_2\text{Ph}), 73.0 \text{ (CH}_2\text{Ph}), 72.8 \text{ (C-5^{\text{Gal}})}, 72.6 \text{ (C-5^{\text{Gal}})}, 72.5 \text{ (C-3^{\text{GlcN}})}, 72.4 \text{ (C-2^{\text{Gal}'})}, 72.2 \text{ (C-3^{\text{GlcN}'})}, 71.9 \text{ (C-2^{\text{Gal}})}, 71.7 \text{ (C-5^{\text{GlcN})}}, 71.5 \text{ (C-5^{\text{GlcN}'})}, 71.3 \text{ (C-4^{\text{GlcN})}}, 71.2 \text{ (C-4^{\text{GlcN}'})}, 69.7 \text{ (C-5^{I})}, 69.6 \text{ (C-6^{\text{GlcN}})}, 69.5 \text{ (C-6^{\text{GlcN}'})}, 69.0 \text{ (C-6^{I})}, 68.3 \text{ (C-6^{II})}, 67.7 \text{ (C-6^{\text{Gal}})}, 67.4 \text{ (C-6^{\text{Gal}'})}, 61.2 \text{ (C-2^{\text{GlcN}'})}, 61.00 \text{ (C-2^{\text{GlcN})}}, 59.7 \text{ (C-2^{I})}, 56.7 \text{ (C-2^{II})}, 55.3 \text{ (OCH}_3), 51.6 \text{ (N-CH}_2\text{Ph}), 51.4 \text{ (N-CH}_2\text{Ph}).$

The mixture of the N,O-deacylated compound (68 mg, 0.037 mmol) and 20% Pd(OH)₂/C (50 mg) in 80% acetic acid (6 mL) was stirred at 60 °C under H₂ atmosphere overnight. The mixture was filtered through a syringe filter (Millipore Millex LG, hydrophilic PTFE 0.2 μ m cartridge), and the cartridge was washed with MeOH and water. The filtrates were concentrated with toluene and dried in vacuo. The residue was dissolved in MeOH-water (1:1, 4 mL), neutralized by ion-exchange resin (PS-Trisamine; Argonaut Tecnologies), and filtered. The filtrate was concentrated in vacuo, and the residue was N-acetylated with Ac₂O-MeOH (3:7, 5 mL) at room temperature for 2 h. The residue was concentrated, neutralized, and re-N-acetylated as described above to give fully N-acetylated products containing partial O-acetates. The product was dissolved in MeOH (3 mL), and the solution was adjusted to pH 9 by addition of a 0.1 M solution of NaOMe in methanol for 3 h, neutralized by Amberlyst (15 DRY), filtered, and concentrated. The residue was fractionated by size-exclusion chromatography (Sephadex LH-20; 1:1, MeOH-water) and lyophilized to give 1b (29 mg, 67%) as a white powder. $[\alpha]D^{26} + 110$ (c 1.0, H₂O). ¹H NMR (500 MHz, D₂O at 30 °C) δ : 4.88 (d, $J_1^{VI}_{,2}^{VI} = 4.0$ Hz, 1 H, H-1^{VI}), 4.87 (d, $J_1^{IV}_{,2}^{IV} = 3.5$ Hz, 1 H, H-1^{IV}), 4.76 (d, $J_1^{I}_{,2}^{I} = 3.5$ Hz, 1 H, H-1^{IV}), 4.57 (d, $J_1^{I}_{,2}^{II} = 3.6$ Hz, 1 H, H-1^{II}), 4.53 (d, $J_1^{II}_{,2}^{III} = 3.6$ Hz, 1 H, H-1^{II}), 4.53 (d, $J_1^{II}_{,2}^{III} = 3.6$ = 7.5 Hz, 1 H, H-1^{III}), 4.52 (d, $J_1^{V}{}_{,2}^{V}$ = 8.0 Hz, 1 H, H-1^V), 4.36 $(dd, J_2^{I}{}_{,3}^{I} = 11.0 \text{ Hz}, 1 \text{ H}, \text{H}{-}2^{I}), 4.18 (d, 1 \text{ H}, J_3^{I}{}_{,4}^{I} = 3.5 \text{ Hz}, 1 \text{ H},$ H-4^I), 4.18 (m, 1 H, H-5^{IV}), 4.17 (m, 1 H, H-5^{VI}), 4.08 (dd, J₅^I, ₆^Ia = 3.0 Hz, $J_{6 a, 6 b}^{I}$ = 12.5 Hz, 1 H, H-6^Ia), 4.05 (m, 1 H, H-5^I), 4.04 (dd, 1 H, H-3^I), 4.02 (dd, $J_5^{II}_{,6}{}^{II}_{a} = 2.0$ Hz, $J_6^{II}_{a,6}{}^{II}_{b} = 11.0$ Hz, 1 H, H-6^{II}a), 3.99 (d, $J_3^{III}_4^{III} = 3.5$ Hz, 1 H, H-4^{III}), 3.97 (d, $J_3^{V}_{,4}^{V} =$

3.0 Hz, 1 H, H-4^V), 3.92 (dd, $J_2^{IV}{}_{,3}^{IV} = 10.5$ Hz, 1 H, H-2^{IV}), 3.91 (dd, $J_2^{VI}{}_{,3}^{VI} = 10.5$ Hz, 1 H, H-2^{VI}), 3.85 (dd, $J_5^{II}{}_{,6}{}^{II}{}_{,b} = 5.5$ Hz, 1 H, H-6^{II}b), 3.83 (dd, $J_5^{IV}{}_6^{IV}{}_a = 3.5$ Hz, $J_6^{IV}{}_{a,6}^{IV}{}_b = 12.5$ Hz, 1 H, H-6^{IV}a), 3.79 (dd, $J_3^{IV}{}_4^{IV}$ = 9.0 Hz, 1 H, H-3^{IV}), 3.79 (dd, $J_3^{VI}{}_4^{VI}$ = 9.0 Hz, 1 H, H-3^{VI}), 3.77 (dd, $J_2^{II}_{,3^{II}}$ = 10.0 Hz, 1 H, H-2^{II}), 3.77 (m, 1 H, H-6^{IV}b), 3.76 (m, 1 H, H-6^{VI}b), 3.74 (dd, $J_2^{III}_{3}^{III} =$ 10.5 Hz, 1 H, H-3^{III}), 3.73 (m, 1 H, H-4^{II}), 3.73 (m, 1 H, H-6^Ib), 3.69 (dd, $J_2^{V}{}_{,3}^{V} = 10.5$ Hz, 1 H, H-3^V), 3.61 (m, 1 H, H-5^{II}), 3.59 (dd, 1 H, H-2^{III}), 3.55 (dd, 1 H, H-2^V), 3.54 (dd, $J_4^{IV}{}_{,5}^{IV} = 9.5$ Hz, 1 H, H-4^{IV}), 3.54 (dd, $J_4^{VI}{}_5^{VI} = 10.0$ Hz, 1 H, H-4^{VI}), 3.79–3.67 (m, 6 H, H-5^{III}, H-6^{III}a, H-6^{III}b, H-5^V, H-6^Va and H-6^Vb), 3.36 (s, 3 H, OCH₃), 2.08, 2.06, 2.02 and 2.01 (s, 3 H each, NAc); ¹³C NMR (125 MHz, D₂O at 30 °C) δ: 175.3, 175.0 and 174.9 (2 C) (NCOCH₃), 105.5 (C-1^V), 103.9 (C-1^{III}), 102.1 (C-1^{II}), 99.1 (C-1^{VI}), 98.9 (C-1^I), 98.8 (C-1^{IV}), 79.4 (C-4^{II}), 77.7 (2 C, C-3^I and C-4^{III}), 77.3 (C-4^V), 76.3 (C-5^{III} either C-5^V), 76.0 (C-5^{III} either C-5^V), 75.5 (C-5^{II}), 73.1 (C-3^{II}), 72.6 (4 C, C-3^{III}, C-3^V, C-5^{IV} and C-5^{VI}), 71.4 (C-3^{III}), 71.1 (2 C, C-3^{IV} and C-3^{VI}), 71.1 (C-2^V), 70.6 (C-6^I), 70.3 (2 C, C-4^{IV} and C-4^{VI}), 70.1 (C-5^I), 69.7 (C-4^I), 60.9 (C-6^V either C-6^{III}), 60.8 (C-6^V either C-6^{III}), 60.7 (3 C, C-6^{II}, C-6^{IV} and C-6^{VI}), 55.9 (C-2^{II}), 55.6 (OCH₃), 54.6 (2 C, C-2^{IV} and C-2^{VI}), 49.2 (C-21), 22.8, 22.7, 22.5 and 22.5 (NCOCH₃). HRMS (ESI-Q-TOF) calcd for C₄₅H₇₆N₄O₃₁+Na 1191.4391; found 1191.4387.

Acknowledgment. S. M. thanks the RIKEN's matching fund for PRESTO, President's Discretionary Fund from RIKEN. We thank Dr. Teiji Chihara and his staff for elemental analyses, Dr. Kaori Otsuki and Dr. Masaya Usui at the Research Resource Center of RIKEN's Brain Science Center for high-resolution MS measurement. We thank Ms. Akemi Takahashi for her technical assistance.

Supporting Information Available: Copies of NMR spectra for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

JO070669P